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ABSTRACT

Considered is the pure initial value problem for the system of equations

ut uxx + f(u) - w, Wt = c(u-Yw), the initial data being (u(x,0),w(x,0)) =

(M(x),0). Here C, y are positive constants, and f(u) - -u+H(u-a) where

H is the Heaviside step function and a e (0,1/2). This system is of the

FitzHugh-Nagumo type and models the conduction of electrical impulses in a

nerve axon. In an earlier paper the author considered the curve s(t) -

sup{xtu(x,t) - al, and showed that if *(x) > a on a sufficiently long

interval and decays sufficiently fae*. to zero as lxi + -, then

lim s(t) - . In this paper a more detailed description of the asymptotic
t+40

behavior of s(t) is given. The results demonstrate that when e is

small, s(t) eventually propagates at a rate close to the speed of the unique

traveling wave solution, U(z), for e - 0, w(x,t) E 0 which satisfies

U(-) = 1, U(4+-) - 0.
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SIGNIFICANCE AND EXPLANATION

A model for the conduction of electrical impulses in a nerve axon is

considered. In an earlier paper the author demonstrated that the model

exhibits a threshold phenomenon. This corresponds to the biological fact that

a minimum stimulus is required to trigger a nerve impulse. In this paper a

more detailed description of the asymptotic behavior of the solution of the

equations is given. It is proven that, in some sense, the solution eventually

propagates with constant velocity.
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A FREE BOUNDARY ARISING FROM McIAN'S MODEL
FOR NERVE CONDUCTION

David Terman

Section 1. Introduction

In this paper we consider the initial value problem for the system:

1. " 
u x x  

f(u) - w

wt -C(u-Yw)

the initial conditions being u(x,O) - u0(x), w(x,0) a 0. It is assumed that e and y

are positive constants and f(u) - -u+w(u-a). Here H is the Heaviside step function

and a e (0,1/2). This system, with f(u) replaced by f1 (u) - u(1-u)(u-a), was

introduced by PitsHugh (91 and Naqumo, Arimoto and Toshisawa [14] as a model for the

condution of electrical impulses in a nerve axon. The model we consider was suggested by

Koiean 1121.

In (18] it was demonstrated that (1.1) exhibits a threshold phenomenon. That is, if

u0 (x), which corresponds to the initial stimulus, is sufficiently small, then

lie lu(-,t)l . + Iw(.,t)l - 0. In this case the initial data in said to be subthreshold.
t L L
If u0 (x) is sufficiently large, or superthreshold, then one expects some sort of signal

to propagate. This was shown to be the case for £ sufficiently small. More precisely,

assem that u0 (x) satisfies the conditions:

(a) u0 (x) e c 2()

(b) u0(x) e (0,1] in it

(C) u0 (x) - uo(-X) ,

(1.2) (d) there exists a unique constant x0 > 0 such that u0 (x0 ) - a

(e) u0 (x) > a for lxi < X0

(/42/2 ) (xo-x )

(f) lu0(x)l - se for l > x0

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062,
Nod. 2.

-



Let s(t) be defined as s(t) - sup{t : u(xt) - a). We define u0 (x) to be superthres-

hold if lin a(t) *. The main result in [18] is then

Theorem 1: Choose a e (0,1/2) and y > 0. Then there exist positive constants e0 and

6 such that if ee (0,c 0 ) and u0 (x) satisfies (1.2) with x e0 > , then u0 (x) is

superthreshold.

In this paper we give a more detailed description of the asymptotic behavior of

s(t). Before stating these results we point out that one expects that if the initial data

is superthreshold, then the solution of (1.1) should asymptotically approach a traveling

wave solution. By a traveling wave solution we mean a solution of the form (u(x,t),

w(x,t)) - (U(z),W(z)), z - x + St. These correspond to solutions which propagate with

constant shape and velocity. The existence of traveling wave solutions for the FitzHugh-

Wagumo system, with fl(v), was given by Carpenter (2], Conley (3], and Hastings (10].

Rinzel and Keller (16] considered the McKean model with y - 0. Similar results for the

McKean model with y > 0 have been obtained by Rinzel and Terman [17].

There may exist at least two traveling waves of a particular type (pulses, fronts,

periodic waves, etc.). Jones [11] considered pulse shaped solutions of the FitzHugh-Nagumo

model and showed that the fastest wave is asymptotically stable. This means that if the

initial data is sufficiently close to the traveling wave, then the solution asymptotically

approaches some translate of the wave. Stability of waves for McKean's model was proven by

Feroe (8. Both Jones and Feroe used techniques developed by Evans [41 - (7]. One

expects, however, more to be true. Numerical calculations (see [17]) indicate that any

superthreshold initial data should give rise to a solution which asymptotically approaches

a translate of a traveling wave solution. In terms of the curve s(t), this means that

there should exist a constant, 0 , such that if £ is sufficiently small and the initial

data is superthreshold, then lim (s(t)- Ct) exists.
t4.

If c - 0 and w(x,t) R 0, then (1.1) reduces to the scalar equation:

(1.3) ut = Uxx + f(u)

-2-



This equation possesses a unique traveling wave which satisfies Ut(-) - 1, U(4) - 0. In

fact, if * is the speed of this wave, then P - (1-2a)[a[1-a))
" 1/ 2  (see Rinzel and

Keller [161 ). The result of Jones and numerical calculations lead one to expect that

lim e, - 0*. In this paper we show that if C is sufficiently small, then s(t)
6E0 

asymptotically propagates with speed close to 0'. This is made precise in the following

theorem. In the theorem, as in the rest of the paper, we assume that a and y are fixed

constants and u0 (x) satisfies (1.2) with x0 > e.

Theorem 2: Given 6 > 0, there exists a constant, C(6), much that if 0 < c < C(6),

then for any T > 0 there exists a to > T such that

(8-6)(t-to ) + s(tO ) - 6 < S(t) < (6'+6)(t-t O ) + 6

for all t > to.

The theorem is proved using the fact that 8(t) must satisfy an integral equation.

This equation is presented in the next section where preliminary results are also proved.

In section 3 we describe how to choose e(6). The proof of Theorem 2 is given in section

4.

Throughout this paper we assume that there exists a unique solution of (1.1). We also

assume that there exist constants U and N such that Iu(x,t)I < U and Iw(x,t)l < V

in 2 x R . The question of uniqueness is apparently quite hard and to the author's

knowledge has not been solved. Some discussion of these questions is presented in (18].

We conclude the introduction by pointing out that in (191, the author considered the

scalar equation (1.3) and showed that in the superthreshold case la (s(t)-Ot) exists.
tern

A rather complete description of the asymptotic behavior of solutions of the scalar

equation has been given by 14Kean (13]. Mcean's results also hold for (1.1) with £ < 0.

-- 0



Section 2. Preliminary Results

We first introduce some notation. Let

-t ex2/4t
(2.1) K(xwt) 2 2/2tl/2

That is, X(xt) is the fundamental solution of the equation

(2.2) *t . *xx - V

It will be convenient to define s(t) for t < 0. We assume that s(t) - *(0) for

t < 0. Let

*(x,t) - . K(x-E,t)U0 (EME

;(.,t) - ft fa(l) X(x-4,t-T)dadT

i(x.t) - ft f" K-,(-t-)w(,T)d d

G - {(x,t) 2 u(x,t) > al

R - ((x,t) : u(x,t) - a)

Let X(x,t) be the indicator function of the set G. Then for (x,t) * I, (uw)
satisfies the system

ut - UM - u + X(x,t) - w

(2.3)
Wt - C (u-,Yw)

If (x,t) 4 H, then (u,w) can be written implicitly as
t

u(x',t) - *xt) + 1 I K(x-4,t-T)X(4,1)ddT - r(x,t)

(2.4)

w(x,t) - coue t 
ft ej Ynux,"nd'1

Letting x - s(t) in (2.4) we obtain

(a) a - ;(s(tl t) / If X(, t1- .t-T)X(T)dd - (,(t).t)

(2.5)

(b) v(s(t),t) - fc
t

f
t 

] eYf (t),idv

We now set

-4-



VOW) - *(.(t),t)

Rat) - Vas)(t) - ft f" K(s(t)-&'t-r)X(E, )dtdr

Then (2.5) becomes

(a) 6(s)(t) - a + r(t) - *(t) + Rat)
(2.6)-cti Y )r

(b) w(s(t),t) - ce" y t 
ft e 1"u(s(t), •

We now present the important properties of the various terms appearing in (2.6),

beginning with *(t). Note that ;(xt) is the solution of the scalar equation (2.2) with

initial condition V(xO) - u0(x). A simple application of the usual comparison theorem

for scalar, parabolic equations (see [1], Theorem 2.1) implies that 1*(x,t) 4 e
-  

for

all (x,t). Hence

(2.7) 0 4 f(t) 4 e-t

for all t e e.

To estimate R(t) we use the following result which is proved in (181.

Proposition 2.1: Fix a and y. and let co and e be as in Theorem 1. Assume that

0 < C < c0 and u0 (x) satisfies (1.2) with x0 > 0. Then, there exists a positive

constant (=A(E)) such that u(x,t) > a for sat) - X < x < 5(t), t > 0. Furthermore,

lia )(C) =+.

C+0

This result implies that

Rt) 4- ;0 IGO) X(sct) ,tt-T)d~dr + ft fs~)XC OM tTdd

-- (t) + t2 (t)

Now,

R, , t ) , C yK s t)0t d d - f tod t

-5



Since Jim A(f) m, a straightforward calculation shows that

R2 (t) I g(Z)

for some function, g(), which satisfies him g(t) - 0.
afrO

Therefore,

(2.8) R(t) < g(c) + e-t

We nov discuss se properties of #. Choose T > 0, and let u(t) and O(T) be

continuous functions which satisfy a(t) ( 0(t) for t < T and a(T) - O(T). From the

definition of 0, it is clear that *(a)(T) 4 0(0)(T). Now let 6 and K be constants

and 1(t) - Ot + K. we claim that *(f)(t) is independent of both K and t. This is

because,

*(t)(t) - It f"+KXcet+X-9't-0ddTr

and, letting a - T-t, a - ( - tOt+K) we find that

*(1)(t) m JO fee: K(-%,-s)dzda

which only depends on S. Let
(2.9) h(8) - Joes"

It is not hard to see that h(O) - 1/2, h'(O) < 0 for all 0, and lim h(O) - 0. Bance,
6..

there exists a unique constant S" such that h(O*) - a. As discussed in (19], 0* is,

as in section 1, the speed of the unique traveling wave solution of (1.3) which satiifies

U(-) - I and U(+-) - 0.

Before discussing r(t) we must discuss ways of finding a-priori bounds on

Iu(x,t)I and Iw(x,t)l. The main tool in obtaining these bounds is the next proposition

and its corollaries. For the statement of these results it is convenient to define the

operators:

F(uw) Ut - uXx + + w

G(uw) = wt - C(u-Yw)

-6-



We fix constants c. K, and T with c and T positive. Let 1(t) - ct + K and 0 -

((xt) : x ) 1(t), 0 4 t < T}. We assume that (u,w) is only defined in 03, and

satisfies (1.1) along with the initial-boundary conditions (u(x,0),w(x,0)) - (u0(x),w0(x))

for x > K, and u(i(t),t) - Q(t) for t e (0,TI. It is assumed that G(t), uO(x),

and w0 (x) are continuously differentiable. Assme that there exist functions u(x,t),

u(x,t), w(x,t) and w(x,t) defined in Q3 which satisfy

(a) (uw) ( (u'w) in a

(b) _u, u, I, and w along with their first derivatives with

respect to t and second derivatives with respect to x are
(2.10)

continuous functions in A,

(c) (u(xO),v(x.O)) 4 (u0(x),w 0 x)) 4 ((x,0),w(xO)) for x ) K

(d) u(A(t),t) ( a(t) ( u(lt),t) for t e 10,T]

Here (a,b) ([c,d) means that a 4 c and b • d.

Provosition 2.2: If (2.10) is satisfied and

Cl(.,w),Glu,v)) C (0,0) 4 CF(uv),G(uw))

in n, than (u,w) C (u,w) C (u,w) in 0.

This result is proved in (201. The following few results show how the proposition is

used to obtain bounds on w(x,t) and F(t).

Ca 2Corollary 2.3: Let W - and assume that 6 < c . Furthermore, assume that

Jal(t) < a in (0,T), Iu0 (x)1 < aec(K-x) and Iw0 (x)l < We
c (

K-x) for x > K. Then

Iu(x,t)l 4 ae ZLt)x) and Iw(x,t)l C wc (C t)-x) in 0.

Proof: This result follows immediately from the proposition once we set u(x,t) =

c(t(t)-x) -cCZ(t)-)x) c(AWt-x) -c~t(t)-x)-ae, u(x,t) as, w(x,t) - -We
(  

, and w(xt) - Me

Proposition 2.4: Assume that uo(x) satisfies (1.2) with x0 > e, and 0 < C < C0

There exists a constant M10 such that lw(s(t),t)I < em 1 for all t e a4 .

-7-



Proof: In (18] it is proved that there exist positive constants X0' C1, and C2, which

do not depend on C, and a sequence tn}, k - 0,1,2,..., such that for each k,

(a) 0 - t0 < tI < t2 <''

(b) C1 < tk+1 - tk <C 2

(c) S(t k ) - x 0 + k
(2.11)

(d) s(t) < x 0 + k for t < t k

(e) s(t) > x. + k -0 for tk < t ( tk+1

(f) Iw(x,t)l < a for x > s(t)

we first show that Iw(s(tk ).t k)I < Cm2  for some M2 and each k. Note that (2.11)

implies that s(t) < -L - (t -C2)) + s(t k ) - tk(t) for t < tk-C2 . Fix k and let

1(t) - k (t). From the definition of s(t) it follows that u(L~t),t) < a for t < tk .

We claim that u(L(t),t) > -a for t < tk. This follows from the following comparison

argument which shows that u(x,t) > -a for x > s(t).

Let L be the operator defined by Lu S ut - u + u. If we can show that

LU > L(-a) for x > aet) then, because u(x,O) > -a for x > s(O) and u(s(t),t) > -a,

the usual comparison theorem for parabolic equations will imply that u(x,t) > -a

for x > s(t). However, L(-a) - -a while (2.11f) implies that Lu -w -a.

We assume that C 2 > V2. Then, using (1.2f), Iu(x,O)l < as 2
x
0 for x > x0 .

Corollary 2.3 now implies that Iw(t(t),t)I < < aC 2c for t < tk_ 1.

(1/C2 )
2 + ) 

In

particular, Iw(s(t k),tk-C 2 )1 < aC2C. Then, for t > tk - C2, the equation wt - C(u-yw)

implies that

Iw(s~t k ),t0 -w(s(t k)'tk-C 2)k + C2 )+etC lu(s(t ),Ol)dn

+

Therefore, letting t = tk  and using the assumption that lu(x,t)I < U in R x R , we

find that

Iw(s(t ),tk )I ( aC 26 + CUC22
So if we set N2 * aC2 + U2 we find that Iw(s(t),t )j ( CM for each k.

We must now estimate w(s(t),t) for t not equal to one of the tk's. Choose k so

that t k < t < t k+1 . We consider two cases. First assume that tk < (A 0+I)C 2 . Then

• , m. mmm m m0 2



Iw(s(t),t)I cut < cutk+ 1 ( CU(tk+C2 ) ( CUC 2 ( 0+2)

Next assume that tk > (k0+1)C 2 Tet I I(x) be the inverse function of I kt). That is,

C (x) 0 C2 (x(t k)) + tk-C2

Now, (2.11e) implies that a(t) > s(tk) - Y0 Hence, 1-(S(t)) >t) - (+1)C 2 . Hence,

Iv(-(t),t)l < I*(t), *C(S(t)))l + C ft Iu(s(t),n)IdI

-2(s(t))

2 tkuI(t+,-L(a~t))]

2 2 + U(X0 +2)c 2 ]

So, we let H1 - aC2 + U(A0 +2)C2 , and the proof of the proposition is complete.

Proposition 2.5: There exists a constant M, which does not depend on E, such that

r(t) < Cm for all t.

Proof: Fix to > 0, and let C1  and C2  be as in the Proposition 2.4. Let

I(t) - -L [t-t0I + 8(t0). The proof of Proposition 2.4 shows that Iw(x,t)I < M V for
C 01 a~ 0 1

X > 1(t), 0 4 t 4 to Let I (x) be thp inverse function of I(t), and assume that

t(0) < x < 1(t), - (x) < t < t O  Then,

Iw(x,t)t e Iw(x,1' (x))I + - ft lu(x,n)ldn
I (x)

CM1 + CUlt-- I (x)] C[I 1 + UC 2(x-s(t 0))]

A similar computation shows that if x < 1(0), then

Iw(xt)t 4 CIN1 + UC2 (x-s(t 0 ))]

Now,

Ir(t 0 )l 4 fo f7(T)K(s(t )-C.t -T)Iw (C T )Id d T + f JUT K(s( 0 )-Et 0
°- T )fw( & T )ld~ dT

Note that,

-9-



th C• CM10 f K(.(t )-Et 0  )€dTdr CH1 .

On the other hand,

f) • K~s~t0 )- 0-T" I + UC2(4- ))Jdcdr

f t f s (.t 0 ) (s(t 0 ) _,t 0 T)[( I  + UC (4 _8(t 0))]d~dT

. o f O.K°(-t,-,, ., -C oU&dT

( CM2

for some constant M2  which does not depend on t0  or e. Setting m m1 + M2 we

obtain the desired result.

Combining (2.6a), (2.7), (2.8), and Proposition 2.5 we conclude that there exists a

constant e and a function G(C) with the property that lis G(C) - 0 such that if
C+0

0 < C < C1, then

(2.12) IW(s)(t) - &I c G(c) + 2e
-t

-10-



Section 3. ihe constant C(6).

Throughout the rest of the paper we assume that the constant 8, which appears in the

statement of Theorem 2, is fixed. Later it will be convenient to asume that

8 < inff1,c*/2). Since we're really interested when 4 is small, this is no problem. In

this section we explain how to choose tWG). We begin with a few preliminary results.

Fix o > 0, and T > 0. Let

1(t) - o(t-T) + s(T) for t e ,

H - t < T :s(t) C ZWt) I

D - ((x,t): s(t) < x < i(t), t e H

A(x,t) fj K(x-E.t-T)d~dt for t ; T

Proposition 3.1. Given a > 0, and x e I, there exists 0 (-OW()) such that if

A(x,T) > a, then A(s(T),T) ). Furthermore, $ does not depend on x, T, 0, or E.

Proof: Since we're really only interested when a is small, we assume that a < 1/3. Let

M = -log a/3, M 2 = -log( - a/3), and z(t) - C2 (t-T) + s(T) - ).A Here C2 and X0 are

as in Proposition 2.4. That proposition implies that

(3.1) z(t) < s(t) < s(T) + 2X0  for t < T

Let

M = {(T) : T-M1 < < T- 2 , z(r) < E < s(T) + 2XO}

D ((E,r) e D :- < T-MI }

D 2 - ((E,T) e D iT- I ( I(T-M)

03 - {(C,T) e D T- 2 ( I < T

Then, for x e R,

A(x,T) - J I f K(x-&.T- )ddT + fD 2 f (x-C,T-Tid~dT

+ f f K(x-E,T- r)d~d-r

T-Mf
[- j* -1 K(X- ,T-TldF~dr 4 JDJ Klx-,T-ldFd2

-11-



4.fT fm. K(X-CT-Tr)dtd'

+ Jt) f I(X-CT-,r)dtd'r
3 2

If A(x,T) > a, then

f f K(x-CT-T)d~dT >SD2  3

Note that if lxj is sufficiently large, then for (&,T) e M,
K(s(T)-CsT-T) > K(x-C,T-T)

Therefore,

r - inf K[x-J.T-T) over (c,T) e M, x e R
K(s(T)-E,T-T)

is positive. Note that r does not depend on x, T, a, or c. Now (3.1) implies that

D 2- M. Hence,

A(s(T),T) f 02 f K(s(T)-C,T-r)dtdT

) r D 2f K(x-&,T-T)d~dT

r
3

Corollary 3.2. Given a ) 0, let 0 be as in the proposition. If A(s(T),T) < 0, then

A(x,t) < as T -t for all x e R, t > T.

Proof: Proposition 3.1 and the assumption that A(S(T),T) < 8 implies that A(x,T) ' a

for all x e R. Note that A(xt) is the solution of the inhomogeneous equation

*t " $xx- + XD in R x R

*(x,0) " 0 in R.

Here, X D  is the indicator function of the set D. "Restarting* at t -T we find that

A(x,t) is the solution of the homogeneous equation

*t . #xx - 4 in R x (T,-)
(3.2) t x

*(x,0) - A(x,T) in R

-12-



The result now follows from a simple application of the standard comparison theorem for

parabolic equations.

We now describe, without motivation, how to choose C(M). Let

I - ((x,c) : 0 x 1 1, c*/2 4 c C 2c*)

. - mt X(x-cT,-!)d-r
(x.c)ez

(3.3)
N 1 6

2

Let h(e) and G(c) be as in (2.9) and (2.12), respectively. It is assumed that

c(6) is chosen so that if 0 4 C 4 C(6) and jh(O)-al < 2G(e), then

(3.4) l6-*I < inf{6/2, B(a)/24)

1-2a
We also assume that G(C) - and C(8) < .

-13-



faction 4. Proof of- Mfeorem 2

It is assumed throughout this section that uO~(x) satisfies (1.2) with xo ), 0, and

0 < 9 (8). We begin by obtaining a lower bound on the rate at which s(t) propagates.

Lema 4.1: Lot c, - supic 3 0(t) > ct + 9 for *ar K and a1l t). Then

c I >6* 8/2.

11

8,6*,I < 4/2. Furthermore, G5(r) < 1-2. Cho."e V so that i" < 2. For n ), U
a 2N 4

choose c n so that h(c n) a + G(C) + !-. Let t - -log L- and X. inf e(t).
2n n n 2 (t't"

For t e 10,tN] let Q~t) X,~ and for t > tNO let a~t) be the continuous, piecewise

linear function defined by al(t) - cn for t e (t n tn~j). We show that a~t) < s~t)

in e. Since MI(t) > 0' 8 for t muff iciently large, this will complete the proof.

It is certainly true that d~t) < s(t) for t e (oT.). Suppose that there exist.

" )Pt such that a(T) - aCT) and u~t) < s(t) for t < T. Assume that

" e (tnltn+1*. Then, (2.12) implies that

*CsR (T) < a + G(c) + 2.?_

< a + G(C) +*k

n2

t < T. Hlence,

*(s)(T) > *(a)CT) > 4(1)(T) - h(c )-a + GMC +
n 2n

and ws have a contradiction.

The proof of the following lemma is quite similar to the one just given.

Lesuma 4.2. Let co - inf~c : at) < ct + X for some K and all t). Then

c0< 0* + 8/2.

before proceeding it is necessary to introduce some notation. Choose 01l 0 2 so that

h(a - a - 2G(C) and h( 2) - a + 2G(c). Since e < EM8 it follows that 0 1 - 0 2 <8.

toet X 0 - 11. supfatt)-c t), and I (t) .c t+ K. Choose {t ) so that00 00 n

-14-



8(t) 0 M) + 1/n for t t .n, and eftn ) > 1 0 (tn) - 1/n. Choose (0 n  so that

hO n ) = (s)(t n), and let Xn(t) = n(t-t n ) + aft ). For the time being fix n. Assume
-t

that 2e < G(C). Let T - th n l(t) - a i(t-) + a(?), L2 (t) - 02 (t-T) + s(T),

3 
(
t) - A (t), and c3  0 n

For J - 0,1,2, and 3, let

R = {t<TiS(t) < A (t))

J - (t<Tr (t) < s(t))

A(T)
A - f f SM C(?)-C,T-T)df

( Zs(T)-1,?-T)dd
mS " Jj "t(T)

To emphasize their dependence on n, we sometimes write NJ (n), J(n), A (n), and

D (n). For j = 0 and 3, (2.12) implies that, ha 1 ) < h(c) h( o2, and, therefore,

02 < c 01. From our choice of tn we conclude that1 £0 (t) < 1 (t) + 2/n for t > T.

Furthermore, since I -(T) - 13(T) - *,2(T) = s(T), it follows that 11 (t) < L3 (t) < I 2(t)

for t < T.

Lemma 4.3. B0 (n) + 0 as n...

Proof: Fix m < n. Since a(t) < A (t) + 2 for t > to,
0 a

t t o(T)+2
B0 (n) c f f K((t )-C,t -T)qd + Itn f 0 T) K(s(t )-C,t -T)d~dT

- (3) + (11]

Now,
t -Ct -T) -Ct -t)

(I] e n dT C e n M

On the other hand,

t I( -+ 4,t-

n -1S-

fil4 OT (? n)EtnTdd



=f4/m fo X(T-ct,'r)drdv)

0

C-

for some constant N which does not depend on m and n. We have now shown that

(n ) 1 !! e-(t n-t Is

0 m

n n+l
for all m 4 n. Let m- if n is even and m- - if n is odd. It follows that

-t /2

B (n) C ! + • n and the proof is complete.
0 n

Note that A3 - B3 , This is because the equality h(c 3 ) - *Cs)(T) implies that

f!f1" K(@(T)--C,T-r0d~dT - fTf'" K(sC'f)-C,T-T)d~dT

Hence,

0 _ f f 3) X(s(T)-C,?T-)dCdr - A - 3

We now estimate A2 (n). Note that since I(t) < 3 (t) < 2(t) for t < T, it

follows that

2 i(T)n) + I A (r) K(s(T)-C,T-T)d~dT

3 01 1(T)
< 3 (n) + IfT jI() Ks()-,-r)dCdT

f.0 (T) 0 ., (T)

- B0 (n) + (I1 + CIII

To estimate (I1 we recall that for j - 0 or 3, 0a < cj C 01. Moreover,

t 0 (T) < s(T) + 1/n. Hence, a simple calculation shows that

(1 T f2 (T)+I/n 0 02

-4 1L 1L (T) X(?)-(,-T~dtdT - j . f:2 I T T~~d

4 3(a2-01)

Similarly,

-16-



4 3( 2-0 )

Therefore,

A2(n) DOW(n) + 6(2-01

We assume throughout that n in chosen so that % (n) < 2 where 0(a) was defined in
a

(3.3). From (3.4) it follow that a -01 ( L Therefore, we conclude that for n
12

sufficiently large,

(4.1) A2 (n) ( B(s)

Here we give a brief outline of how the proof of Theorem 2 is completed. We construct
a sequence of positive constants, (8 k, k - 0,1,2,.., such that a k 6 . Furthermore,

letting s(t) equal to the piecewise continuous function defined by

s(t) for t < tf n
(4.2) z(t) =k

. 2 (t) - 1 8j for t + k 4 t < t + k + I
-0 n

for k - 0,1,2,... , we show that, for n large, 3(t) < 9(t) for t > tn . This

completes the proof of Theorem 2 for the following reason. Recall that

4(t) < iI(t) + 2/n for t > tn . Hence, if n is sufficiently large, then

S2(t) - 8 ( at) + £l(t) + 6

for t > tn. Hoewver,

(t) - 2.(t) - aI  a 2 C

Zn what follows we fix n, let T - tn a end Tk  T + k.

The 6k  are defined inductively. Assume that k1'...'
6
It1 have been chosen so that

for t < Tk, (t) > z(t) where s(t) is defined by (4.2). We show how to define k .

Here, k may be equal to zero. Note that 6k must be chosen in such a way that

z(t) < s(t) for t e (Tk'Tk+i). From the definition of 8 it will be clear that

i 6 < 6 for n sufficiently large.
k-0 I

-17-



Assume, for the moment, that 6k has been chosen, and there eKists t o C (ek,?k 1 )

such that s(t 0 ) - *(t0 ), and St) '( (t) for t e (Tk,t0). The following calculation

dmonstrates that if 8k  is too large, and n is suitable chosen, then

OWNt ) '> ho 2)

Since a(t) 4 4(t) for t 4 to  this implies that

#(@)(t 0 ) > *()(t 0 ) >h( 2  - a + 2G(c)

which contradicts (2.12). In what follows we net

k

sk t) - 2 (t)-
J.0

Now,

t+ f() o f:(T))(toCt-Tdd
()Ct 0 ) - f xfK a t0 )-Ct0 -)d + ; k

(4.3)
thk2 %- Wz K(Z(t0)-4't0

" )d d + f t.0 fe(T) )K(z(t0)-4't0":)dtdT

h(O 2) f f k M Ct~tdd 0 k-1~t

- hO 2 ) + III + (III]

Note that

: .(...+8k ,..T)dC4
(4.4) 2

8 kI

where N1  was defined in the previous section. Here is where we used the assumption,

mentioned in the beginning of section 3, that 6 < inf{lc*/2}. 7b estimate I11 we note

that, since a1 M) < t 2 ) for T < to p

k- 2T or k I( o),

HeNce,

(4.5) 2 -JZ~ f 2 ~ t-~d

we now wish to apply Corollary 3.2. Comparing the notation of sections 3 and 4 we find

that if 1(t) - L2 t), then

(4.6) A(x,t) " j 2 () -t-)d~di

for t > T, and

-18-



A(8(),T) - A2(nI

Fence (4.1) implies that if n is sufficiently large, then A(S(2),t) < $(a), and we

conclude from Corollary 3.2, (4.5) and (4.6) that

T' t -k

(4.7) [-me T - 0 • -it

Combining (4.3), (4.4), and (4.7) we find that

ellto  h(6 2 1  
81C~ - m .

U -k

so if we set 6 - k , we obtain the desired result that *(x)(t O ) • h(a23. itk Wt 0 2

remains to verify that 6k < 6. However, this follows from our choice of a given in
k-3

(3.3).
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